p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))
↳ QTRS
↳ DependencyPairsProof
p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))
P(a(x0), p(x1, p(x2, x3))) → P(a(x3), x3)
P(a(x0), p(x1, p(x2, x3))) → P(x0, p(a(x3), x3))
P(a(x0), p(x1, p(x2, x3))) → P(x1, p(x0, p(a(x3), x3)))
p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P(a(x0), p(x1, p(x2, x3))) → P(a(x3), x3)
P(a(x0), p(x1, p(x2, x3))) → P(x0, p(a(x3), x3))
P(a(x0), p(x1, p(x2, x3))) → P(x1, p(x0, p(a(x3), x3)))
p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(a(x0), p(x1, p(x2, x3))) → P(a(x3), x3)
P(a(x0), p(x1, p(x2, x3))) → P(x0, p(a(x3), x3))
Used ordering: Combined order from the following AFS and order.
P(a(x0), p(x1, p(x2, x3))) → P(x1, p(x0, p(a(x3), x3)))
p1 > a > P1
a: multiset
P1: multiset
p1: multiset
p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
P(a(x0), p(x1, p(x2, x3))) → P(x1, p(x0, p(a(x3), x3)))
p(a(x0), p(x1, p(x2, x3))) → p(x1, p(x0, p(a(x3), x3)))